

Certified Reference Material

Certificate of Analysis

17034:2016

ISO/IEC 17025:2017

Revision No.: 000 Revision Date: 09/25/2023

Product ID: IARM-FE300M-22

Product Description: Alloy Steel, Alloy 300M / K44220

Description and Intended Use: This Certified Reference Material is covered under the scope of accreditation to ISO 17034 by LGC Standards - Manchester, NH. As an ISO 17034 certified reference material, appropriate use of this material will fulfill the certified reference material and traceability requirements for use in ISO 17025 accredited laboratories. This CRM may come in the form of a solid disk, or chips. The intended use of this CRM may include, but is not limited to, the calibration of instruments and the validation of analytical methods.

tii 10u5.										
		Certif	ied Values	s listed in w	t.% with as	sociated ι	ıncertainties			
0.051	±0.002	As	0.0038	±0.0004	С	0.431	±0.005	Co	0.033	± 0.001
0.773	±0.007	Cu	0.0713	±0.0007	Mn	0.735	±0.005	Мо	0.393	± 0.006
0.0018	±0.0002	Ni	1.90	±0.02	Р	0.0046	±0.0006	Si	1.65	± 0.02
0.0050	±0.0003	Ti	0.0018	±0.0003	V	0.075	±0.001	W	0.0115	± 0.0008
	0.051 0.773 0.0018	0.051 ±0.002 0.773 ±0.007 0.0018 ±0.0002 0.0050 ±0.0003	0.051 ±0.002 As 0.773 ±0.007 Cu 0.0018 ±0.0002 Ni	Certified Values 0.051 ±0.002 As 0.0038 0.773 ±0.007 Cu 0.0713 0.0018 ±0.0002 Ni 1.90	Certified Values listed in w 0.051 ±0.002 As 0.0038 ±0.0004 0.773 ±0.007 Cu 0.0713 ±0.0007 0.0018 ±0.0002 Ni 1.90 ±0.02	Certified Values listed in wt.% with as 0.051 ±0.002 As 0.0038 ±0.0004 C 0.773 ±0.007 Cu 0.0713 ±0.0007 Mn 0.0018 ±0.0002 Ni 1.90 ±0.02 P	Certified Values listed in wt.% with associated u 0.051 ±0.002 As 0.0038 ±0.0004 C 0.431 0.773 ±0.007 Cu 0.0713 ±0.0007 Mn 0.735 0.0018 ±0.0002 Ni 1.90 ±0.02 P 0.0046	Certified Values listed in wt.% with associated uncertainties 0.051 ±0.002 As 0.0038 ±0.0004 C 0.431 ±0.005 0.773 ±0.007 Cu 0.0713 ±0.007 Mn 0.735 ±0.005 0.0018 ±0.0002 Ni 1.90 ±0.02 P 0.0046 ±0.0006	Certified Values listed in wt.% with associated uncertainties 0.051 ±0.002 As 0.0038 ±0.0004 C 0.431 ±0.005 Co 0.773 ±0.007 Cu 0.0713 ±0.0007 Mn 0.735 ±0.005 Mo 0.0018 ±0.0002 Ni 1.90 ±0.02 P 0.0046 ±0.0006 Si	Certified Values listed in wt.% with associated uncertainties 0.051 ±0.002 As 0.0038 ±0.0004 C 0.431 ±0.005 Co 0.033 0.773 ±0.007 Cu 0.0713 ±0.0007 Mn 0.735 ±0.005 Mo 0.393 0.0018 ±0.0002 Ni 1.90 ±0.02 P 0.0046 ±0.0006 Si 1.65

Indicative Values listed in ppm

В 2 Bi 22 Balance Nb Pb Zr 10

Homogeneity and Uncertainty: "Uncertainty" values, as reported adjacent to certified concentration values, are based on a 95% Confidence Interval. These estimated uncertainties include the combined effects of method imprecision, material inhomogeneity, and any bias between methods. Homogeneity data from experimental XRF results are reflected in both the overall statistics and certified data. Homogeneity samples are selected by a systematic sampling procedure. The number of samples may be determined by equation 1, where N_{prod} is the number of units produced and N_{min} is the number of samples used for homogeneity testing. These samples are arranged in a simple randomized design such that each sample is analyzed multiple times by XRF. Homogeneity may also be determined within sample using an applied version of ASTM E826. A single factor ANOVA is used to calculated uncertainty due to inhomogeneity (U_{hom}). Uncertainty of the material is calculated by equation 2, where H=Uhom, S= Standard deviation, t= t-value at 95% CI, and n= number of observations.

1.
$$N_{MIN} = \max(10, \sqrt[3]{N_{PROD}})$$
 2. $U_{CRM} = \frac{\sqrt{H^2 + S^2}}{\sqrt{n}} * t$

Certification Laboratories: Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. Of the individual results herein, some have traceability (to the mole) via primary analytical methods. Some are traceable to substances of known stoichiometry. Most have traceability via commercial solutions. Furthermore, some results have additional traceability to NIST standards, as part of the analytical calibration or process control.

- Anderson Laboratories, Inc.- Greendale, WI
- Cleveland Cliffs Cleveland, OH
- Dirats Laboratories Westfield, MA EAG Laboratories - Liverpool, NY
- IMR Test Labs Lansing, NY
- Instytut Metalurgii Zelaza Gliwice, Poland
- Laboratory Testing, Inc. Hatfield, PA LGC Standards - Manchester, NH
- Lithea S.R.O. Brno, Czech Republic
- NSL Analytical Services Cleveland, OH
- SGS MSi Melrose Park, IL
- Sheffield Assay Office Sheffield, England
- TEC Eurolab Campogalliano, Italy

Instructions for Use: The test surface is on the opposite side of the labeled surface, which includes the material identification. The entire thickness of the unit is certified. However, the user is cautioned not to measure disks less than 2 mm thick when using X-ray fluorescence spectrometry. Each packaged disk has been prepared by finishing the test surface using a lathe. The user must determine the correct surface preparation procedure for each analytical technique. The user is cautioned to use care when either resurfacing the disk or performing additional polishing, as these processes may contaminate the surface. The minimum sample size for chips should be individually evaluated based on the analytical technique used; this would typically be greater than 0.1 grams. The material should be stored in a cool, dry location when

Chips are not recommended for gas analysis.

Period of Validity: The certification of this material is valid indefinitely, within the uncertainty specified, provided the material is handled and stored in accordance with the instructions stated on this certificate. The certification is nullified if the material is damaged, contaminated, otherwise modified, or used in a manner for which it was not intended.

Chuck Goudreau, Certifying Officer

September 25, 2023 **Certification Date**

ISO 17034 Accredited: Reference Materials Producer, Certificate # 2848.02 ISO/IEC 17025 Accredited: Chemical Testing, Certificate # 2848.01

The following data represents all pertinent information reported as it applies to the chemical characterization of this material.

	Al	As	В	Bi	С	Ca	Co	Cr	Cu	Mn	Мо	N	Nb
1	0.0440	0.0021	0.0001	0.0004	0.4200	0.0001	0.0287	0.7410	0.0687	0.7133	0.3570	0.0016	0.0001
2	0.0466	0.0030	0.0001	0.0040	0.4230		0.0294	0.7450	0.0690	0.7190	0.3710	0.0016	0.0003
3	0.0482	0.0036	0.0002		0.4250		0.0300	0.7510	0.0690	0.7260	0.3827	0.0017	0.0026
4	0.0489	0.0036	0.0003		0.4271		0.0320	0.7546	0.0704	0.7300	0.3892	0.0017	0.0026
5	0.0490	0.0036	0.0003		0.4290		0.0326	0.7690	0.0705	0.7303	0.3896	0.0017	0.0026
6	0.0490	0.0037	<0.0010		0.4300		0.0327	0.7700	0.0710	0.7305	0.3900	0.0020	0.0042
7	0.0500	0.0038	<0.005		0.4306		0.0328	0.7703	0.0710	0.7320	0.3903	0.0020	0.0043
8	0.0500	0.0038	<0.005		0.4392		0.0328	0.7750	0.0714	0.7330	0.3915	0.0021	0.0048
9	0.0500	0.0040	<0.005		0.4400		0.0329	0.7760	0.0714	0.7361	0.3925		0.0062
10	0.0505	0.0040			0.4417		0.0333	0.7765	0.0716	0.7364	0.3934		<0.0010
11	0.0505	0.0041					0.0334	0.7770	0.0720	0.7370	0.3940		< 0.005
12	0.0511	0.0044					0.0340	0.7800	0.0720	0.7390	0.3940		<0.005
13	0.0517	0.0048					0.0340	0.7800	0.0723	0.7420	0.3960		
14	0.0546	0.0050					0.0340	0.7846	0.0723	0.7435	0.3964		
15	0.0550	<0.005					0.0351	0.7847	0.0725	0.7444	0.3970		
16	0.0557	< 0.0050					0.0351	0.7853	0.0730	0.7460	0.3990		
17	0.0562						0.0376	0.7880	0.0733	0.7490	0.4020		
18	0.0592						0.0391	0.7883			0.4028		
19								0.7893			0.4061		
20											0.4250		
Avg	0.0511	0.0038	0.0002	0.0022	0.4306	0.0001	0.0333	0.7729	0.0713	0.7346	0.3930	0.0018	0.0031
SD	0.0037	0.0007	0.0001	0.0025	0.0075		0.0026	0.0148	0.0014	0.0095	0.0133	0.0002	0.0020
Certified	0.051	0.0038	(0.0002)	(0.0022)	0.431	(0.0001)	0.033	0.773	0.0713	0.735	0.393	0.0018	(0.0031)
Uncertainty	0.002	0.0004			0.005		0.001	0.007	0.0007	0.005	0.006	0.0002	
Methods	I,O,IM	O,IM,I,X	IM,I	I,O	С	0	I,O,X,IM	I,O,X	I,O,X,IM	I,O,X	I,O,X,IM	F	O,X,IM,I

	Ni	0	Р	Pb	S	Sb	Si	Sn	Ti	V	W	Zr
1	1.793	0.0005	0.0025	0.0004	0.0002	0.0001	1.543	0.0039	0.0006	0.0694	0.0096	0.0001
2	1.852	0.0005	0.0032	0.0004	0.0003	0.0002	1.554	0.0040	0.0010	0.0719	0.0098	0.0003
3	1.858	0.0006	0.0032	0.0007	0.0008	0.0003	1.598	0.0044	0.0014	0.0721	0.0099	0.0010
4	1.862	0.0009	0.0038	<0.0001	0.0011	0.0004	1.600	0.0045	0.0016	0.0725	0.0103	0.0016
5	1.874	0.0017	0.0040	<0.0001	0.0017	0.0014	1.613	0.0045	0.0017	0.0725	0.0105	0.0018
6	1.891	<.0005	0.0043	<0.0010	<.0003	0.0018	1.619	0.0047	0.0018	0.0730	0.0110	<0.0005
7	1.892	<0.001	0.0047	<0.005	<.0005	<0.0010	1.636	0.0049	0.0018	0.0730	0.0110	<0.0010
8	1.900		0.0048	<0.005	<0.0001	< 0.005	1.651	0.0049	0.0019	0.0739	0.0110	< 0.005
9	1.901		0.0048	<0.5	<0.001		1.659	0.0050	0.0019	0.0740	0.0112	< 0.005
10	1.908		0.0050		<0.0010		1.660	0.0050	0.0020	0.0758	0.0113	< 0.005
11	1.908		0.0053		<0.005		1.662	0.0050	0.0020	0.0760	0.0127	
12	1.913		0.0053				1.666	0.0053	0.0021	0.0762	0.0130	
13	1.915		0.0057				1.670	0.0056	0.0023	0.0763	0.0130	
14	1.923		0.0061				1.672	0.0058	0.0023	0.0765	0.0133	
15	1.930		0.0062				1.675	0.0058	0.0029	0.0770	0.0143	
16	1.931		<0.0020				1.676	0.0060	<0.005	0.0770	<.0001	
17	1.937		< 0.005				1.693	<0.005	<0.005	0.0776		
18	1.948		<0.005				1.697			0.0782		
19			< 0.0050				1.701			0.0810		
20							1.727					
Avg	1.896	0.0008	0.0046	0.0005	0.0008	0.0007	1.649	0.0050	0.0018	0.0749	0.0115	0.0010
SD	0.038	0.0005	0.0011	0.0002	0.0006	0.0007	0.048	0.0006	0.0005	0.0028	0.0014	0.0008
Certified	1.90	(8000.0)	0.0046	(0.0005)	(0.0008)	(0.0007)	1.65	0.0050	0.0018	0.075	0.0115	(0.0010)
Uncertainty	0.02		0.0006				0.02	0.0003	0.0003	0.001	0.0008	
Methods	I,O,X	F	I,O,X,IM		С	IM,I	I,O,X,W	I,O,X,IM	I,O,X,IM	I,O,X,IM	I,O,X,IM	0,1

Legend: W = Classical, C = Combustion, F = Fusion, A = AA or GFAA, I = ICP or DCP, IM=ICP-MS, D = DC Arc, O = AES, X = XRF, G = GDAES or GDMS, H = Hollow Cathode AES